26 research outputs found

    Low-power dynamic object detection and classification with freely moving event cameras

    Get PDF
    We present the first purely event-based, energy-efficient approach for dynamic object detection and categorization with a freely moving event camera. Compared to traditional cameras, event-based object recognition systems are considerably behind in terms of accuracy and algorithmic maturity. To this end, this paper presents an event-based feature extraction method devised by accumulating local activity across the image frame and then applying principal component analysis (PCA) to the normalized neighborhood region. Subsequently, we propose a backtracking-free k-d tree mechanism for efficient feature matching by taking advantage of the low-dimensionality of the feature representation. Additionally, the proposed k-d tree mechanism allows for feature selection to obtain a lower-dimensional object representation when hardware resources are limited to implement PCA. Consequently, the proposed system can be realized on a field-programmable gate array (FPGA) device leading to high performance over resource ratio. The proposed system is tested on real-world event-based datasets for object categorization, showing superior classification performance compared to state-of-the-art algorithms. Additionally, we verified the real-time FPGA performance of the proposed object detection method, trained with limited data as opposed to deep learning methods, under a closed-loop aerial vehicle flight mode. We also compare the proposed object categorization framework to pre-trained convolutional neural networks using transfer learning and highlight the drawbacks of using frame-based sensors under dynamic camera motion. Finally, we provide critical insights about the feature extraction method and the classification parameters on the system performance, which aids in understanding the framework to suit various low-power (less than a few watts) application scenarios

    Some like it Hoax: Automated fake news detection in social networks

    Get PDF
    In the recent years, the reliability of information on the Internet has emerged as a crucial issue of modern society. Social network sites (SNSs) have revolutionized the way in which information is spread by allowing users to freely share content. As a consequence, SNSs are also increasingly used as vectors for the diffusion of misinformation and hoaxes. The amount of disseminated information and the rapidity of its diffusion make it practically impossible to assess reliability in a timely manner, highlighting the need for automatic online hoax detection systems. As a contribution towards this objective, we show that Facebook posts can be classified with high accuracy as hoaxes or non-hoaxes on the basis of the users who \ue2\u80\u9cliked\ue2\u80\u9d them. We present two classification techniques, one based on logistic regression, the other on a novel adaptation of boolean crowdsourcing algorithms. On a dataset consisting of 15,500 Facebook posts and 909,236 users, we obtain classification accuracies exceeding 99% even when the training set contains less than 1% of the posts. We further show that our techniques are robust: they work even when we restrict our attention to the users who like both hoax and non-hoax posts. These results suggest that mapping the diffusion pattern of information can be a useful component of automatic hoax detection systems

    Triplet-based similarity score for fully multilabeled trees with poly-occurring labels

    Get PDF
    Motivation: The latest advances in cancer sequencing, and the availability of a wide range of methods to infer the evolutionary history of tumors, have made it important to evaluate, reconcile and cluster different tumor phylogenies. Recently, several notions of distance or similarities have been proposed in the literature, but none of them has emerged as the golden standard. Moreover, none of the known similarity measures is able to manage mutations occurring multiple times in the tree, a circumstance often occurring in real cases. Results: To overcome these limitations, in this article, we propose MP3, the first similarity measure for tumor phylogenies able to effectively manage cases where multiple mutations can occur at the same time and mutations can occur multiple times. Moreover, a comparison of MP3 with other measures shows that it is able to classify correctly similar and dissimilar trees, both on simulated and on real data

    RecGraph: recombination-aware alignment of sequences to variation graphs

    Get PDF
    Motivation Bacterial genomes present more variability than human genomes, which requires important adjustments in computational tools that are developed for human data. In particular, bacteria exhibit a mosaic structure due to homologous recombinations, but this fact is not sufficiently captured by standard read mappers that align against linear reference genomes. The recent introduction of pangenomics provides some insights in that context, as a pangenome graph can represent the variability within a species. However, the concept of sequence-to-graph alignment that captures the presence of recombinations has not been previously investigated. Results In this paper, we present the extension of the notion of sequence-to-graph alignment to a variation graph that incorporates a recombination, so that the latter are explicitly represented and evaluated in an alignment. Moreover, we present a dynamic programming approach for the special case where there is at most a recombination–we implement this case as RecGraph. From a modeling point of view, a recombination corresponds to identifying a new path of the variation graph, where the new arc is composed of two halves, each extracted from an original path, possibly joined by a new arc. Our experiments show that RecGraph accurately aligns simulated recombinant bacterial sequences that have at most a recombination, providing evidence for the presence of recombination events

    Biofiltration of industrial waste gases in trickle-bed bioreactors - Case study: trichloroethylene removal

    Get PDF
    Trichloroethylene (TCE) is a very common air pollutant which has shown some characteristics that make its biodegradation particoularly stiff. TCE removal has been here exploited using a pilot-scale biotrickling filter operating counter-current and with a mixed compost-inert carrier bed. Bioreactor operated for longer than four months obtaining a maximum elimination capacity of 3.17 g/(m3h) and a removal efficiency between 50 and 85%. Pressure drop and pH inside the bed remained constant during the test not affecting bioreactor performance. Using both organic and inert carrier has likely reduced bed compaction and carrier acidification. Data of elimination capacity were fitted using an original Ottengraf-modified model for the steady state conditions

    ASGAL: aligning RNA-Seq data to a splicing graph to detect novel alternative splicing events

    No full text
    Abstract Background While the reconstruction of transcripts from a sample of RNA-Seq data is a computationally expensive and complicated task, the detection of splicing events from RNA-Seq data and a gene annotation is computationally feasible. This latter task, which is adequate for many transcriptome analyses, is usually achieved by aligning the reads to a reference genome, followed by comparing the alignments with a gene annotation, often implicitly represented by a graph: the splicing graph. Results We present ASGAL (Alternative Splicing Graph ALigner): a tool for mapping RNA-Seq data to the splicing graph, with the specific goal of detecting novel splicing events, involving either annotated or unannotated splice sites. ASGAL takes as input the annotated transcripts of a gene and a RNA-Seq sample, and computes (1) the spliced alignments of each read in input, and (2) a list of novel events with respect to the gene annotation. Conclusions An experimental analysis shows that ASGAL allows to enrich the annotation with novel alternative splicing events even when genes in an experiment express at most one isoform. Compared with other tools which use the spliced alignment of reads against a reference genome for differential analysis, ASGAL better predicts events that use splice sites which are novel with respect to a splicing graph, showing a higher accuracy. To the best of our knowledge, ASGAL is the first tool that detects novel alternative splicing events by directly aligning reads to a splicing graph. Availability Source code, documentation, and data are available for download at http://asgal.algolab.eu
    corecore